AMKIS: An Algorithm for Association Mining
نویسنده
چکیده
Mining frequent items and itemsets is a daunting task in large databases and has attracted research attention in recent years. Generating specific itemset, K –itemset having K items, is an interesting research problem in data mining and knowledge discovery. In this paper, we propose an algorithm for finding K itemset frequent pattern generation in large databases which is named as AMKIS. AMKIS algorithm uses no candidate generation and minimum support criteria’s for generating K itemset frequent pattern. The structure and functionality of AMKIS is different from Apriori and FP tree based algorithms. Further, this algorithm does scan transaction database once. AMKIS performance is compared with Apriori algorithm. Our extensive performance study shows that AMKIS algorithm has higher performance as compared with Apriori. The proposed algorithm, AMKIS, is highly scalable for mining not only small but also large K itemset frequent patterns and is linearly scalable in terms of the database size. Keywords— association mining, association rules; business intelligence; data mining; frequent itemset; frequent patterns; knowledge discovery; k itemset and mining methods.
منابع مشابه
Introducing an algorithm for use to hide sensitive association rules through perturb technique
Due to the rapid growth of data mining technology, obtaining private data on users through this technology becomes easier. Association Rules Mining is one of the data mining techniques to extract useful patterns in the form of association rules. One of the main problems in applying this technique on databases is the disclosure of sensitive data by endangering security and privacy. Hiding the as...
متن کاملA new approach based on data envelopment analysis with double frontiers for ranking the discovered rules from data mining
Data envelopment analysis (DEA) is a relatively new data oriented approach to evaluate performance of a set of peer entities called decision-making units (DMUs) that convert multiple inputs into multiple outputs. Within a relative limited period, DEA has been converted into a strong quantitative and analytical tool to measure and evaluate performance. In an article written by Toloo et al. (2009...
متن کاملApplying a decision support system for accident analysis by using data mining approach: A case study on one of the Iranian manufactures
Uncertain and stochastic states have been always taken into consideration in the fields of risk management and accident, like other fields of industrial engineering, and have made decision making difficult and complicated for managers in corrective action selection and control measure approach. In this research, huge data sets of the accidents of a manufacturing and industrial unit have been st...
متن کاملIdentifying and Evaluating Effective Factors in Green Supplier Selection using Association Rules Analysis
Nowadays companies measure suppliers on the basis of a variety of factors and criteria that affect the supplier's selection issue. This paper intended to identify the key effective criteria for selection of green suppliers through an efficient algorithm callediterative process mining or i-PM. Green data were collected first by reviewing the previous studies to identify various environmental cri...
متن کاملData sanitization in association rule mining based on impact factor
Data sanitization is a process that is used to promote the sharing of transactional databases among organizations and businesses, it alleviates concerns for individuals and organizations regarding the disclosure of sensitive patterns. It transforms the source database into a released database so that counterparts cannot discover the sensitive patterns and so data confidentiality is preserved ag...
متن کامل